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Abstract

Traffic route guidance using feedback of predicted
travel times

Arvid Bergsten and Daniel Zetterberg

Traffic congestions constitute a problem in many large cities. Congestions can be
handled by reducing the network demand, expanding the infrastructure, or by utilizing
the road network more efficiently. This master thesis presents a methodology for
route guidance, based on automatic feedback control from the current traffic
situation. Through variable direction signs or individual in-car devices, all vehicles with
a certain origin and destination (which are both normally intermediate) are guided to
take the currently fastest route. In this paper the traffic is guided over one of two
alternative routes with the goal of a Nash equilibrium, i.e. that every guided agent
travels the fastest path. Nash equilibrium occurs when the routes have equal travel
times, or when all agents use a route with shorter travel time. 
     Predictive data describing how the system reacts to control measures is
fundamental to control the traffic in an optimal way. Feedback of observed travel
times results in a system with highly oscillating travel times. Given this background,
the task of this thesis has been to present a model that predicts route travel times,
with the purpose of improving the performance of traffic route guidance. The
approach used is automatic feedback control, and therefore some basic terminology
from control theory is used throughout the report.
     The model introduced in this paper needs no parameter estimation but uses only
static information about traffic network and on-line counting of vehicles. Simulations
show that with reliable travel time predictions at hand, optimal control can be
achieved by bang-bang control; a controller that needs no parameter estimation. The
result is a guidance method that has the potential to work on any location without
prior estimation of location specific parameters.
     A microscopic traffic simulator, MATSim, is used for developing the prediction
model and evaluating its system effect with route guidance. Simulated in-car
COOPERS (Co-operative Systems for Intelligent Road Safety) devices are used for
data collection and for transmitting the guidance to vehicles. The prediction models
and the feedback control are evaluated in two different traffic networks; a
topologically simple test network and a realistic location in the Berlin network. The
results of the simulations are promising; guidance with predictive models results in
significantly shorter average travel time than guidance based on observed travel times.
Evaluation with an economic measure indicates that drivers benefit economically from
predictive route guidance.
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Populärvetenskaplig sammanfattning 
 
Trafikköer är ett allt vanligare inslag i storstädernas vardag. Många timmar går åt till att 
sitta i köer på morgonen och kvällen. För att göra något åt problemen kan kapaciteterna 
på vägarna ökas genom utbyggnad, men ofta finns det också delar av trafiknätet som 
inte är maximalt utnyttjade. Dessa vägar är i allmänhet längre och tar längre tid än de 
vägar som utnyttjas flitigast, men då köer uppstår på huvudvägarna börjar andra 
alternativ bli intressanta. Det är redan vanligt förekommande med GPS-utrustning som 
kan föreslå den kortaste vägen till ett resmål. COOPERS är ett trafikprojekt som bland 
annat syftar till utvecklingen av informationsutbyte mellan fordon och infrastruktur. 
Genom att samla in data för hur trafiken ser ut, t.ex. antalet fordon och flöden till och 
från vägarna, så kan körtiderna för olika alternativa rutter beräknas och informationen 
använda till att guida fordon till den rutt som har den kortaste körtiden.  
 
Ett annat sätt att guida fordon att ta snabbaste vägen mellan A och B är att mäta 
körtider vid B och guida fordonen vid A till den vägen vars uppmätta körtid är kortast. 
Denna sortens guidning är dock för sen, vilket blir ett problem ju längre rutterna är. Den 
vägen som ett fordon leds in på bör vara den väg som kommer att ha den kortaste 
körtiden, inte den som hade det vid ett tidigare tillfälle.  
 
Målet med detta arbete är att utveckla generella prediktionsmodeller för 
körtidsberäkningar som är bättre än att guida med uppmätta värden. Styrmålet är att 
uppnå Nashjämvikt, dvs. att alla agenter guidas till den för tillfället snabbaste vägen. 
Modellerna och vägvisningen implementeras i JAVA i den agentbaserade 
trafiksimulatorn MATSim och testas dels på ett enkelt testnätverk och dels på ett 
scenario i ett Berlinnätverk.  
 
Tester bekräftar entydigt att modellerna fungerar i testnätverket. Guidningen med 
prediktionsmodeller är bättre än guidning med uppmätta värden. Denna generella 
slutsats stärks av berlinsimuleringarna, men för att dra slutsatser om skillnader mellan de 
olika modellvarianterna krävs mer och tillförlitligare utvärderingsdata. 
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Part I - Background 

1. Introduction  
The area of traffic guidance is currently developing fast. The background is both 
increasing problems with traffic congestions in major cities and introduction of new 
traffic management technology such as GPS devices. Congestions are naturally due to 
several causes. If the demand on the road network is much bigger than its capacity, the 
situation is clearly hard and cannot be solved without physical, and generally expensive, 
extension of the infrastructure. But this is not always the case. Often, only some of the 
streets are congested at a given time while the demand on other streets are far beneath 
the maximum capacity. In such cases, it can be fruitful to guide vehicles into less 
crowded streets in order to use the available network optimally.  

It is a common assumption that people take the fastest route in a normal traffic situation. 
But when the traffic fluctuates due to incidents and unexpected demands, people 
often take the slower alternative.  

How should this guiding be carried out? There are many ways of estimating the traffic 
situation. Public radio information about traffic is often based on phone calls, cameras or 
observing helicopters. Route guidance can also be given through variable road signs 
with direction advices or directly to in-car GPS devices. Measurements of travel times 
from point A to point B via two alternative routes can be used to guide vehicles at A to 
take the faster alternative. The theory applied is classic feedback control that is 
commonly used in many industrial processes to achieve a certain predefined control 
goal. The control goal in our case is to direct vehicles into the currently fastest route. 

This approach has been tested with good results; see for example Diakaki (1997). 
However, measuring the travel times at B generally sends a control signal that is too late, 
since there is a time lag between A and B. What is really wanted, is a reliable prognosis 
of the time it will take a vehicle to travel to B, starting from A in this moment – not the 
travel time for the latest measured vehicle that reached B. These adequate travel times 
must be predicted. The idea of this master thesis is to calculate the travel times based on 
the present traffic situation. The development and testing of the prediction model were 
carried out in the traffic simulating software MATSim.  

1.1 Aim and hypotheses  
The overall aim of this thesis work is to develop travel time prediction models that 
improve the feedback control compared to using measured data. The models will be 
implemented and evaluated in MATSim. A general approach will be taken when 
developing the models so that they work independently from the guidance location, 
meaning that no parameter tuning will be necessary.  
 
In focus are accident scenarios. When there is a queue under normal conditions – for 
example in the morning peak hours – the road network is normally used to its full 
capacity and no better alternatives can be found. Hence there is no potential for 
guidance control. But when there is a temporary capacity reduction caused by an 
accident or road maintenance work, the traffic can be rerouted on an alternative route 
that still has a capacity buffer.  
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1.2 Method 
Our approaches for predicting travel times are based on physical principles of traffic 
flows. We have implemented the models in JAVA code using the MATSim structure, 
integrating them with the pre-existent classes for drivers, streets, intersections, etc. In the 
development phase and in the primary evaluation phase a small test network was used 
that consists basically of two routes between point A and point B. For a final and more 
realistic testing scenario we identified a location in Berlin that seemed suitable for this 
kind of guidance control, and evaluated the models further by running them on the 
large Berlin MATSim network on that location. 

1.3 Structure of this report 
Part I: Introduction, theory and reactive control 
The first chapter introduces feedback control as a traffic guidance method and presents 
the aim of the thesis work. Chapter two introduces the theoretical framework and the 
problems with reactive feedback control, i.e. using a measured output. In Chapter 
three, the MATSim framework; the system studied, its dynamics and limitations are 
presented. Also, the networks for testing the models, an introduction to the COOPERS 
project and a brief overview of the JAVA implementation is found here.  

Part II – The prediction models 
Chapter four is the start of part two, and contains the basis for all predictive models in 
this thesis work. Chapter five to nine describes the models and the evaluations of them 
on the test network.  

Part III - Evaluations on a Berlin scenario and conclusions  
The last part includes chapter 10, that presents evaluations from simulations on a Berlin 
network, chapter eleven with conclusions from all evaluations and a last chapter with 
ideas for further research that would push the development forward.  
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2. Theory  
To introduce the relevant theoretical framework, the basic guidance scenario is here 
presented. Basically, drivers want to go from the point A to the point B and there are 
two different routes available. In accordance with the MATSim nomenclature, drivers 
will hereafter be called agents and point A and point B will be referred to as the sign link 
and the destination link, respectively. The agents have learned from experience what 
route has the shortest travel time. Optimally this will result in one of two possible cases. 
The first case is that all agents take the fastest route. The second case is that both routes 
are equally fast, and agents travel over both routs. Two routes can be equally fast if they 
have the same length and speed limit, or if one of them is shorter but currently contains 
more agents that make it slower than normal. At this situation every agents takes the 
fastest alternative; no individual agents would travel faster if he had chosen the other 
route. We say that the system is at Nash equilibrium, with an expression from game 
theory. The Nash equilibrium is the control goal for our route guidance. As mentioned 
earlier, the interesting scenario for route guidance is when something extraordinary 
happens, for example an accident. Since the agents do not know about the accident 
further down the route, many of them will take the slower route. 

2.1 Guiding the agents with feedback control 
The route guidance idea used in the preceding thesis work of Carl Rommel (2007) was 
a classic feedback control. The system output y(t), i.e. the difference in travel times for 
the routes, is called the Nash time. This was measured and used as feedback signal. The 
difference between this output and the wanted output yref is then sent to the controller 
that calculates the next input (guidance direction) to the system. 
In other words, basic feedback control works by calculating the control input u(t) based 
on the size of the control error y – yref. In our case the control error is the difference 
between current Nash time and the Nash time defined by the control goal, which is 
zero, corresponding to Nash equilibrium with equal travel time on both routes. A 
flowchart representation of the closed loop control system is displayed in Figure 1.  
 

 
Figure 1. Feedback flowchart of classic feedback control. 

2.2 The feedback controller 
There are many different controllers that can be used for feedback control. In our thesis 
work, we will solely use bang-bang control, or relay control as it is also called. This is an 
all-or-nothing approach. In every time instance, all the passing traffic is directed into the 
faster of the two routes. Mathematically, one can write the strategy in the following way. 
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If y(t) > 0 then u(t) = 1 the traffic is directed into the alternative route 

If y(t) < 0 then u(t) = 0 the traffic is directed into the main route 
If y(t) = 0 then u(t) = u0 no guidance is given, vehicles take either route 

 
where  y(t) = TTmain(t) – TTalt(t), where TTi means travel time for route i. 

 
A bang-bang controller is robust in terms of that it is system independent. It has no 
control parameters that must be tuned for the specific routes, unlike for example  a PID-
controller. This is a major advantage, especially when no system model is at hand. One 
drawback is that such control tends to be too strong. If the control output is very close to 
zero, the bang-bang controller still controls in the same manner as if the control error 
were very big. This leads to an oscillatory behaviour. The oscillations can be reduced 
with a dead-zone on the output signal so that no control signal is given when the Nash 
time is within an interval close to zero.  
 
The oscillatory behaviour of a bang-bang controlled system also depends on how often a 
new control signal is applied. Assume that the control signal is updated every five 
minutes. If the demand is high and all agents are directed into the same route for five 
minutes, this route will have become considerably slower by the time the control signal 
changes. This obviously generates oscillations, which would be mitigated if the control 
signal would be proportional to the control error. However, if the control signal would 
change as soon as the system state changed, no oscillations (of considerable amplitude) 
would be generated in first place. But then one must have reliable non time-delayed 
information about when the sign of y(t) changes. Having such information, and in-car 
devices instead of variable direction signs on the roads, every car can be guided 
individually according to the latest calculated control signal. We return to the practical 
aspects of the communication of the control signal in the next chapter. 

2.3 Problem with reactive control based on measured system output  
Observations of the time difference between the two routes do not give us reliable 
information about what travel time an agent at the sign link can expect. The time lag 
from input (the control signal) to output (the Nash time), results in oscillatory system 
behaviour and a guidance signal that will never be up to date. To illustrate the time lag 
and the oscillatory behaviour, two graphs are shown below. We can see the time lag in 
the travel time diagram in Figure 2. Here, no guidance control is applied. The dashed 
black graph is the measured travel time on which a reactive control signal would be 
based, if used. For example, at 4000 seconds simulation time the expected travel time 
for an agent entering the main route was 800 seconds. But when that vehicle reaches 
the destination link, its travel time is measured to 1000 seconds. The two curves contain 
the same values (in this test case all agents travels a complete route), but shifted 
depending on the length of the queue. If the travel time is 500 seconds, then the 
measured value will show up 500 seconds “too late”. The longer the travel time, the 
larger is the time lag.  
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Figure 2. Illustration of the system time lag. 
 
As the control signal is derived from “old” information, agents are directed into a route 
also after it has become the slower alternative, generating the oscillating Nash times 
showed in Figure 3. Unlike the last diagram, the Nash time plot was generated from a 
simulation with the route guidance activated. 

 
Figure 3. Nash times with reactive control. The asymmetry is due to the capacity reduction 
on the main route, which has longer queuing times. 

 
The cause of the oscillating behaviour is the inadequate system output that we use for 
the control. As seen in Figure 2, there is a discrepancy between travel time values used 
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for control and the travel times that are later measured for the guided vehicle. 
Therefore, if a queue is discovered, i.e. the measured travel times are bigger on one 
route; the controller starts sending vehicles in the other direction. But it is not until these 
vehicles reach the end of the route that the controller can notice the change that the 
control achieved. Thus, the system output needed is not observable, as the 
measurements are too old. 
 
Our primal idea was to compensate for this by identifying the time delay of the system; 
i.e. after how many seconds a change in the control signal causes a change in the 
measured Nash time. This is problematic as the time lag is not time invariant but 
depends on the queuing time (which in a controlled system is affected by the control 
signal). As showed in the travel time graph, the longer it takes to travel the route, the 
greater the difference between the current values and the measured. This is intuitively 
comprehensible as the time lag is determined completely by travel time on the routes, 
which of course depend on the traffic situation, e.g. queues.  

2.4 Modelling theory – predicting the system output 
Instead of using outputs that are "too old" we want to predict the output for the agents 
before they are guided. For that we need a model that predicts the travel times 
according to the present traffic situation. With predicted system output, the flow chart 
of the system will look like in Figure 4.  
 

 
Figure 4. Feedback flowchart with prediction. The dotted arrow is the measurements from the 
system, i.e. number of agents on the links, etc. 

There are different approaches to model dynamic systems. Physical modelling is often 
preferred for simple systems where the dynamics follow well-established physical 
theories. When no system knowledge is at hand, there are a number of black-box 
approaches. When identifying a system with such methods, parameters in differential 
equations are mathematically optimized to suite the relationship between input and 
output as good as possible. Time lags are often included in such models, but the 
problem for the traffic guidance is that the time lag between input (left or right for an 
agent) and the output (difference in travel time between that agent and another agent 
travelling on the other route) is varying over time, depending on current traffic 
conditions. If there is presently a long queue, it will take a long time before a change in 
guidance will be noticed at the end of the routes. Due to this and also for the reason 
that it is always a good idea to try the simplest things first, we choose the approach of 
physical modelling. 
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One could say that Figure 4 does not represent a feedback control loop, using a strict 
definition of “system feedback”. There is no feedback from the system output y(t) – in 
fact the observed output plays no part at in the control. Nevertheless is there an obvious 
feedback from the system to the control signal, and therefore we will continue to use the 
term “feedback control” for the route guidance.

2.5 Guidance over more than 
two alternative routes 
Our scenarios – and our modelling 
methodology – limit the controller to 
using two alternative routes for guidance. 
It is easy to see that a road network could 
be used more efficiently if the guidance 
control could direct traffic via several 
different routes. Later in this report we 
discuss the difficulties we had finding a 
suitable test location in Berlin. As we 
focus on highway accidents, it is hard to 
find one single alternative route that has 
capacity enough to handle a substantial 
part of a highway traffic flow – and still 
having a travel time short enough to be a 
reasonable alternative. 

 

 
Figure 5. Diagram for multiple route 
guiding. 

 
These limitations in the road network can be dealt with by using more than one 
alternative route to compensate for a capacity reduction on one big main route. It is 
possible and theoretically quite simple to connect many two-route controllers of the 
kind previously described, so that a traffic management system can guide traffic over 
many alternative routes. Figure 5 is a binary tree where every leaf represents the current 
travel time for a route, predicted with the models developed within this thesis work. 
Every parent displays the travel time for the fastest of its children routes. The current 
structure of the tree in Figure 5 informs us that route 2 is currently faster than route 1, 
but route 3 is the fastest of all four alternatives. All agents going from A to B are 
therefore directed into route 3. As soon as any of the other routes become faster route 3, 
that route travel time will become the root of the tree. The guidance will shift, keeping 
the system at Nash equilibrium. 

2.6 Modelling traffic systems – current research 
Looking at traffic theory in the literature and previous similar attempts gave a starting 
point to model the system physically. There are several different ways to model traffic. 
One is the cellular automata model, i.e. models that consist of a regular grid of cells, 
each in one of a finite number of states. The time in cellular automata is discrete and 
the state of a cell at time t is a function of the states of its neighbourhood at time t − 1 
(Wikipedia, 2008). Each cell could be a part of a road.  
 
Another way of modelling traffic is by microscopic, discrete models that handle 
individual vehicles; MATSim is an example of such an approach. Traffic systems can 
also be simulated in macroscopic, continuous fluid-dynamic traffic flow models (see for 
example Helbing, 2003). In the article Real-time freeway traffic state estimation based on 
extended Kalman filter: a general approach (Papageorgiou, 2005), Markos Papageorgiou, 
and Yibing Wang develop “a general approach to the real-time estimation of the 
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complete traffic state in freeway stretches […] based on the extended Kalman filter.” A 
macroscopic traffic flow model is presented in a state-space form and tested with good 
results. However, this approach is computationally complex and hard to implement for 
testing in e.g. MATSim, especially when the freeway stretches are long and there are 
several intersections or on and off ramps. 
 
The general idea though was adopted, i.e. to use physical conditions of the roads such as 
capacity, length, intersections, together with speed limits and sensors that can give 
information about current velocities, number of agents and traffic densities on a road 
segment. Traffic densities are not treated as explicitly as in the work of Papageorgiou 
and Wang. In their model, as well as in several other models (see for example Vandaele, 
2000), road capacities are expressed as the maximum density of vehicles of a road. In 
this thesis, the maximum capacity of a road segment is defined as the maximum rate 
with which it can release its vehicles. A reasonable assumption used in our model 
development, is that in case of queue, agents are served in this maximum rate. One 
could say that the simple queuing model used in this work, is similar to classic queuing 
theory, involving servers and agents. Bottleneck links are the servers and vehicles are the 
agents. Little or no attention is paid to the agent-to-agent dynamics. The modelling 
method used in this thesis work is thus a macroscopic traffic flow model. 
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3. MATSim  
The abbreviation MATSim stands for Multi-Agent Transport Simulation Toolkit. 
MATSim is a micro-simulator toolbox for demand modelling, simulation, iteration and 
analysis of transportation scenarios and is built on the queuing model introduced by 
Gawron (Gawron, 1998). “Micro-simulator” means that the simulation is agent-based, 
simulating on a per-car-basis, but the mobility simulation is sometimes labelled 
”mesoscopic” as some aspects of individual agent behaviour are described 
macroscopically. Unlike other traffic simulating software, MATSim generates individual 
activity plans for all agents, who in turn dynamically generate a demand on the road 
network.  

3.1 The street network 
A traffic network consists of links that represent roads, or parts of roads, tied to each 
other at nodes, which represent intersections. A link has three basic properties that 
constitute its traffic dynamics; its free speed velocity, its flow capacity (number of cars 
that can leave the link per time unit) and a storage capacity (the maximum number of 
cars that can occupy the link at the same time) (Cetin, 2003, page 8).  
 
The intersections follow a three step logic: A car will move from one link to another if 1) 
it has arrived at the end of a link, 2) it can be moved according to the flow capacity of 
the link and 3) there is free space on the link that it is about to enter. If two cars from 
different links want to enter a third link at the same time step, the simulation will choose 
which car randomly proportional to the capacity of the incoming links (Cetin, 2003, 
page 9). 
 
The links in MATSim have only one lane with a capacity that represents all lanes on the 
road segment in the real world. This simplification has become a problem on highway 
ramp locations in our simulations, a problem we will come back to in Section 3.6. 
Another simplification of the Berlin traffic network itself is that no traffic lights have 
been implemented.  

3.2 Population, the agents 
Simulations in MATSim need a number of interacting agents. The agents constitute a 
population that uses the network for different activities. Every agent has a plan that he 
tries to follow during the day. A plan is a sequence of activities such as home, work, 
leisure and travels that connect the different places where the activities take place. An 
activity has a start and end time and the agents know over which links they should 
travel to get to each activity. The plans are derived from real data. In other words, the 
population used in the Berlin simulations represents the real people in Berlin, having 
similar activities. To run the simulation on standard personal computers, the population 
file used in the Berlin simulations has approximately 350 000 agents, constituting a 10 
percent sample of the total number of agents in Berlin. The capacity of the network is 
reduced to a corresponding level in order to keep the simulation realistic. 

3.3 Replanning 
To develop traffic situations that resemble real world scenarios, the agents can replan 
from day to day. In MATSim, altering an agent’s behaviour is possible only through 
modification of its plan (Illenberger, 2007, page 2). The system remembers several 
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plans for every agent and measures the performance of each plan. In this way agents 
learn what routes are fast, and discard plans with slower routes. If the links that they 
travelled were congested yesterday, they might try another route today. After a number 
of iterations of this sort, the population learned to take the approximate best route 
alternatives if nothing unexpected happens, such as an accident. In the Berlin 
simulation, the population is the result of 80 iterations of the same day. After 80 
opportunities to replan, it is expected that the agents take the optimal or close to 
optimal routes between their activities, and no further day-to-day replanning is made 
(Illenberger, 2007, page 5). This implies that there is no need to actively guide the 
traffic unless something extraordinary happens that causes queues to build up 
unexpectedly. As all Berlin simulations were made from the same iteration, the day-to-
day replanning was never active within this thesis work. 
 
Agents can also do within-day replanning. Under certain conditions, e.g. if a link ahead 
looks congested, the agent can modify its day plan spontaneously and choose a faster 
route. It is this feature, which makes it possible for agents to react to unforeseeable 
incidents, that is used for the online traffic guidance that we develop in this thesis work. 
According to predictions of the travel times on different alternative routes, the fastest 
way is provided to the agents, which will listen to the recommendation with a certain 
probability, a compliance rate. Other within-day replanning features than the route 
guidance subject to this report are deactivated in our simulations to increase 
transparency. 

3.4 How MATSim is used in this project 
The general process of simulating traffic in MATSim 
is illustrated in figure 6. We use MATSim for deve-
loping and evaluating prediction models, and for 
simulating feedback control with the output pred-
icted from the models. From MATSim we measure 
number of agents; travel times on routes and on 
links. We also get information about links; capacities, 
lengths and speed limits, from the network data. 
MATSim allows us to set accidents on specific 
locations, which is vital for our purposes since this 
alter the traffic situation and change the best route 
choices for the agents. There is also a number of 
preset evaluation data that are given by MATSim, 
such as average travel times and a population score. 
Those have been modified to suite our purposes 
better and we will return to this in the evaluation 
chapter. For an implementation of this kind of route 
guidance in the real world, it would be necessary 
with a physical infrastructure for the online mea-
suring of the traffic data mentioned. We return to 
this matter briefly in chapter 4 of this report. 

 
Figure 6. The MATSim 
simulation process.

 
As in any model development that employs a simulator for testing, the conclusions 
drawn from this thesis work must be limited. It is possible that the microscopic simulator 
MATSim and the prediction models that are developed can show similar qualities – 
traits that are not a true reflection of real traffic. Normally we assume that the results 
simulated in MATSim are representative for real traffic systems. Hence, the models are 
designed to take care of the flaws that the models show in the MATSim simulations that 
are being studied and, but this is if and only if the flaw can be associated with a 
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problem in the real world, i.e. no model or optimization has been done that did not have 
any foundation in the real world. In this matter, knowing more about the MATSim 
dynamics would not have been beneficial to improve the results of the models. 

3.5 The Coopers-project and the Test Scenario. 
The MATSim development team cooperates in some projects with COOPERS, which 
stands for CO-OPerative SystEms for Intelligent Road Safety. It is an European 
research, development and innovation activity within the Call 4 (Co-operative Systems 
and in vehicle integrated safety systems) of the 6th Framework Programme by the 
European Commission - Information Society and Media (COOPERS, 2008). The 
COOPERS project focuses among other things on route guidance and is indirectly 
involved in this thesis work project and hence a short presentation is in place.  

Aims of the COOPERS project 
From its start in 2006, the COOPERS project has focused on developing telematic 
applications between vehicles and infrastructure in order to provide infrastructural and 
safety related status information. Two specific goals for the project are (Nemec, 2008): 
 
• Selective traffic jam warning and guidance based on current traffic situation on 

highway segments 
• Short term ETA (Estimated Time of Arrival) based on current traffic situation on 

the road network 
 

3.6 Berlin test location 
For the evaluation of route guidance using the prediction models that were to be 
developed, we chose a Berlin highway section relevant according to the aims with the 
COOPERS project. In addition to these we had the following criteria on the test 
locations: 
 
• The main route must have a high demand during simulation hours. When an 

accident reduces the capacity of the road temporarily and partially (e.g. to 50 
percent for an hour), this should generate a queue that increases the travel time on 
the main route so that the alternative route becomes faster. 

• The alternative route should have capacity enough to handle the extra traffic that 
it receives due to the accident on the main route. If it is not big enough to take any 
additional traffic, then it will not be a real alternative.  

• The alternative route is generally longer than the main route, but it should not be 
too long. Under normal conditions agents take the main route because its cost, in 
terms of travel time, is lower than for any of the alternatives. Nevertheless, the 
alternative should not be as costly that you stick to the main route; no matter how 
much time you will spend queuing. 

 
The location finally chosen is on the northbound highway 111 in north-western Berlin, 
close to the Tegel airport. After analyzing MATSim simulations, this location seemed to 
fulfil the criteria above and to be suitable for our purposes. The highway constitutes the 
main route and has a capacity of 47 600 agents/hour, while the alternative route has a 
capacity of 22 300 agents/hour. To make the simulations run faster, the population of 
Berlin is reduced to 10%. This is compensated for as the capacities of the links are also 
reduced to 13%, which is something that has been proved by previous research to be 
realistic. This must be kept in mind when studying the tables that contains number of 
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guided agents. An accident that reduces the capacity by 50% is set far north on 
Highway 111, red on the map in Figure 7. The blue route is the alternative route. The 
traffic dynamics of the alternative route is quite different from that on the main route in 
terms of having many intersections and therefore a lot of additional traffic. Predictions 
on the alternative route should therefore be harder to do than for the main route that 
only has one additional on/off-ramp location. 

Figure 7. The main route (red) and the alternative route (blue) of the Tegel test location. 
(Google Maps) 

 
We experienced some problems with the road network while trying the route guidance 
initially. The on and off ramps of the highway were congested immediately when just a 
few agents were directed off the highway and onto the alternative route. The flow 
capacities of these links were doubled, and in this way it was made possible to evaluate 
route guidance on the Tegel location. Increasing the capacities is not necessarily 
equivalent to widening the road in the real world. The effect can also be achieved by a 
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telematic modification of the intersection, i.e. giving the guided agents a special 
treatment (e.g. a green light).1 

3.7 Infrastructure needed. Coopers-devices and VDS 
Our models and implementations are fairly flexible. They require sensors that count 
vehicles at certain measurement points. Unlike when using reactive control based on 
measured travel times, the prediction models presented in this thesis do not require that 
the vehicles be tagged, just counted. The sensors must provide information about 
number of vehicles on a road segment (“links” in MATSim) as well as the current in- 
and outflows to the route. The route guidance sent to in-car devices, or to a stationary 
variable direction sign, a VDS, at the sign link. In this thesis work is assumed that 
individual in-car devices are available such as the RDS-function of the car radio or a 
GPS, and we refer to them as COOPERS-devices. 
 
For the simulations we assumed that 80 percent of the receivers of the guidance 
actually follow the advice. The rest stick to their original plans, perhaps thinking that 
their own experience of the traffic is more reliable than the automatic traffic 
management system. The 80 percent compliance rate was used in the preceding work 
of Carl Rommel (2007), and to us it seemed to make the simulations more realistic. The 
positive effect of the guidance (measured in travel times, Nash times and also model fit) 
is expected to be lower when not all agents comply with the control signal. Still, the 
indications should point towards the same conclusions, regardless of the compliance 
rate. 
 
COOPER-devices should be able to supply the relevant information, but if they only 
will be able to receive and not send information, sensors at certain locations could be 
used. Instead of using a COOPERS infrastructure, the models developed in this thesis 
work can be used with variable direction signs. The biggest difference would be that the 
direction sign could not be updated too often since that would confuse the drivers. 
Further discussion about VDS implementations can be found in the thesis work of Carl 
Rommel (2007). 

                                            
1 The capacity modifications (link number and modification factor) can be found in the file 
TrafficManagementConfiguration.xml. Naturally, the capacities are constant over all 
simulations. 
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3.8 The test network 
The simulations on the Berlin network are very time consuming and the traffic situations 
are complex. To develop our models, a test network was designed together with 
populations suited for trying the features of the models. The test network is shown in 
figure 8. 

 
Figure 8. The test network. Green colour represents free flow conditions and red represents 
congestion. The accident location is indicated by the arrow.  
 
The test network is designed so that the capacity of one link equals the sum of the 
capacities of the incoming links. This seemed like a reasonable assumption and suitable 
for testing the features of the models. Agents go from left to right and the guiding takes 
place at the first crossing. The upper route is referred to as the main route and the lower 
as the alternative route. The accident is set on link 14, which is the short link 
immediately after link 13, which is the long red link in figure 8. On the main route, 
there are two additional links, one for incoming and one for outgoing traffic if such 
scenarios are needed. Traffic from or to these link will not be guided and is looked upon 
as a disturbance. The colour scheme represents the traffic density on the links. White 
links are not trafficked at all, green links have low density, yellow represents medium 
density, and red means that the link is completely congested.  

3.9 Implementation  
MATSim is a large and complex simulator and during the work with this thesis, most of 
the architecture was perceived as a black box whose inner dynamics was known nor to 
us, nor to the models. To facilitate the reader’s understanding of MATSim and how the 
prediction models were integrated, this chapter presents the JAVA-classes that are the 
closest and most relevant to the prediction models. 

VDSSign: From prediction to guidance signal 
The name VDSSign is a remnant from the earlier thesis work of Carl Rommel who 
initially used Variable Direction Signs to communicate with the agents. This class, as 
well as some other implementations, was refactored during our work, but the name 
remained.2 
 

                                            
2 As said before, a big difference between using a VDS-sign and in-car COOPER devices is that 
the guidance signals going out to the agents can be updated every second having COOPER 
devices, while updating the guiding on a big road sign every second will confuse the drivers 
quite severely. The java class VDSSign is still the class communicating with the agents, but in 
our implementation it can do it without paying any respect to the update intervals.  
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When the route guidance is activated as a traffic management module, an instance of 
VDSSign is created for every two-route guidance system. The task of VDSSign is to ask 
the ControlInput object for the current system output and transform this into a 
control signal. When the control input is an object of ControlInputImpl1, VDSSign 
gets the measured Nash time (reactive control). Otherwise it gets a system output 
predicted by either ControlInputSB or ControlInputMB (more about these classes in 
Part II).  
 
The VDSSign sends the Nash time a FeedbackControler, which returns a control 
signal. The BangBangControler returns –1 or 1, indicating the fastest route. The 
PControler – which is not used as argued for earlier in this report – returns a value in 
the interval [–1, 1], depending not only of the sign of the Nash time but also the size. 
VDSSign then communicates this value to the MATSim system for withinday-
replanning, which makes the agents replan and change their route. If the Nash time is 
zero, the VDSSign does not give any guidance and the agents stick to their original 
plans.  

ControlInput: making the predictions 
The Interface ControlInputI defines the different ControlInput implementations, i.e. 
the prediction models that we developed, by demanding some necessary methods like 
the getNashTime(). A more important class is AbstractControlInput, which 
contains the objects that are common for all prediction models. For instance, this is 
where all the information about the network is read when the simulation starts, like free 
speed travel times, inlinks and outlinks, natural bottlenecks, etc.  
 
The abstract class also contains the important code that measures travel times. This is 
done by calling the MATSim method handleEvent(), which can be considered to 
represent sensors that detect when a vehicle leaves or enters a link. In this way flows and 
agents are measured and the models get the data they need for predicting the travel 
times for an agent at the sign link. In the ControlInput implementations, 
getPredictedTravelTime() predicts the travel time for every route, and the 
difference is being returned by getPresictedNashTime(). The class variables 
messageHoldTime defines how often a new guidance signal derived from the system 
output.  
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Figure 9, An UML–representation of the controller and prediction classes. The UML standard 
for illustrating class structures can be found for example on the web page: 
http://www.agilemodeling.com/artifacts/classDiagram.htm (29 Jan 2008). 
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Part II - Prediction Models  

4. The basic theory used in the models  
Starting off from a simple flow based queuing model, we need the number of cars on a 
road and the capacity of that road to calculate the travel time. As said earlier, in 
MATSim roads are represented by so called links. If the current link has a capacity of 
letting c vehicles out per second, a maximum of c ⋅ t vehicles can exit the road in t 
seconds. Thus, c is the outflow rate from a link when a queue is present. Assuming that 
all agents travel at the maximum allowed speed, called free speed, the time it takes to 
travel a link if no queuing is needed is the length of the link divided by the free speed. 
This time is called TTfs , which strand for Travel Time at Free Speed. 
 
If we count the number of vehicles that currently occupy a link, we can calculate the 
time it would take for all the agents to be released off the link, using the maximum 
outflow, c. This time could be called the queuing time, TTq. In queuing theory terms, we 
calculate the total serving time for the agents. Comparing TTfs and TTq and choosing the 
greater of the two gives us an estimate of the link travel time. If TTq < TTfs, this can mean 
one of two cases, that we treat in the same way. Either there is a queue short enough to 
be completely served before an agent about to enter the segment arrives at its end. Else 
the agents presently on the road segment are even fewer, generating no queue at all. An 
agent entering the road segment will in both cases travel the whole segment by free 
speed, arriving at the end of the segment in TTfs seconds. 
 
Doing this kind of predictions for an entire route, consisting of several links, our first 
approach was to find one bottleneck link of the route and using this link's capacity for 
the predictions. This first model is called the Single Bottleneck Model, or just the SB, and 
will be described in detail in the next chapter. Focusing on one single bottleneck 
seemed as a good methodology a priori, based on the assumption that there are no big 
inflows or outflows that influence the traffic situation to great extent.  
 
It is important to realize that TTq is not just the time the queue needs to dissolve, but 
also our predicted travel time for an agent entering the route. Even if the agent spends 
most of the time on the route driving free speed and only a little time queuing at the 
bottleneck, his total travel time to the bottleneck will be determined by when the agent 
in front of him pass the bottleneck.  
 
The assumption used above, that the maximal outflow of a link occurs when it has a 
queue might seem intuitively strange. One might think that a queue would mean lower 
velocity, and therefore that the outgoing flow would be beneath the maximum. Our 
definition of a queue states, however, that a queue arises when the flow of agents onto a 
link is higher than the outflow capacity of that link. This means that when agents are 
queuing on a link, the actual outflow has reached the maximum allowed by the 
physical characteristics of the link. Only when the capacity is reduced – as in the 
accident test case – will the presence of a queue imply that the outflow is beneath the 
normal maximum. 

4.1 Evaluation measures 
There are different ways of evaluating a model. The model itself can be evaluated 
through fit values. The fit value measures how much of the travel time variance that is 
explained by the model, in other words its prediction accuracy. It is calculated by 
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comparing predicted and measured travel times on the routes, as in the expression 
below. The prediction error 

! 

(yi " ˆ y i)  is calculated every second so index i corresponds to 
the simulation time. The simulation is set so that a new 

! 

ˆ y i is calculated every second. 
This should be compared to the travel time observed at the end of the route 

! 

yi seconds 
after 

! 

ˆ y i was calculated (when the agent entered the route). Therefore, the data set with 
predicted values was pre-processed so that 

! 

ˆ y i is the travel time predicted for the agent 
whose observed travel is

! 

yi. Another interesting value is the Nash time, since minimizing 
them is the control goal. The Nash time is, as explained earlier, the travel time 
difference between the routes. Instead of “time difference” we will continue to use 
“Nash time” for the reason that this is the term used in the MATSim code. With the 
following formula we get a scalar value reflecting the size of the Nash deviation for an 
entire simulation (the value is hereafter referred to as “standard Nash deviation”). 
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where  is the measured Nash time 
  the predicted Nash time 
  the standard deviation of Nash times and 
 N the number of predictions. 
 
It is worth mentioning that the predictions are done every time step, in our case every 
second, but there are not always agents passing and receiving the guidance. Also the 
measured times are extracted every second, which means that the latest measured 
travel time will be used in every step. In a time step when no car left the route, we 
compare the travel time measured for the latest vehicle that left the route with the 
travel time predicted this time step. If the traffic situation changes (e.g. number of 
agents on the route links) and the predictions reflect that, the fit value will be affected 
negatively even though the model is doing a good job, providing the controller with a 
more up to date input. This deviation is normally very small compared to the value of y 
and cannot even be seen in the travel time plots presented n the report. The error 
becomes clear in a scenario where only very few agents travel on one of the routes, since 
predictions still are made every second. Another interesting way of evaluating the 
models is to see how the average travel times are changed for the agents when using a 
certain model compared to using reactive control or no control. The travel times for 
every agent were extracted from the simulations. The average travel time for each of the 
two routes and the average travel time for both routes are calculated and used as 
measure of the system performance. Also the number of agents travelling on each route 
will be given as an evaluation measure. This measure allows us to compare the number 
of redirected agents for different models, and informs about how many agents “suffer” 
from travelling on the slower route, and respectively how many benefit from taking the 
faster alternative.  
 
We use one more evaluation measure, the score. The score translates changes in travel 
time to economic effects (measured in euros per agents). This measure works best with a 
realistic population, and was there fore used only in the Berlin scenarios. The scoring 
functions will be explained further in Part III. 
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5. The Single Bottleneck Model  

5.1 Description of the model  
The model is based on the following strategy. We identify the bottleneck on the route, 
which is either the link with the lowest outflow capacity or, more interestingly, a link 
where an accident partially reduces the normal capacity. All the agents that are on the 
part of the route before the bottleneck are counted and so the travel time is predicted. 
The free speed time needed to reach the bottleneck is then compared with the time it 
takes for the cars on the route to pass the accident (calculated with the reduced 
capacity outflow in case of a known accident). If not all agents ahead of the agent 
currently being guided (the guidance object) will have passed the bottleneck within 
the free speed driving time the guidance object will have to queue. In this case the 
travel time for the guidance object is predicted to be the queuing time up to the 
bottleneck. This is added to the time it takes to finish the remaining part of the route, 
which is assumed to be travelled free speed. Finally, after the travel time has been 
predicted in this manner for both routes, the predicted time difference is returned to 
the guidance system. 
 
In the end of this chapter we discuss some traffic dynamics that could cause problems 
for this rather simple prediction model. We expect, however, the route guidance to 
perform better with this model than with observed travel times. Recalling the 
background given in chapter 3, we can expect the effect to be greatest when the 
accident is far away from the sign link, with much congestion in between.  
It is a prerequisite that the accident is “known” to the model, i.e. that the reduced 
capacity can be used in the calculations instead of the normal maximal capacity of the 
link. Naturally also the location of the accident must be known. This information is 
accessed easily in MATSim, but in the real world it is needed that the temporary 
capacity reduction is identified manually, for example by traffic management 
personnel. If the reduction is due to road work or similar, such information can be 
acquired beforehand. Later in the report a methodology for detecting capacity 
reductions automatically is presented.  
 
It is important to realize why the travel time is predicted as the queuing time, and not 
the (free speed) travel time needed to reach the queue + queuing time. This would be 
incorrect because the queue will have partly dissolved when the agents reaches it. In 
fact, the predicted queuing time will be reduced with exactly as many seconds as it took 
for the agent to reach the queue, driving free speed. In other words, the TTfs part is 
“eaten” by the TTq part.  
 
As discussed previously, when the traffic situation on the route is not affected 
significantly by inflows or outflows, i.e. additional traffic coming onto or going off the 
routes from intersections along the route between A and B, there is no reason to argue 
for that there is more than one bottleneck on a route. If the bottleneck is the narrowest 
part of the route, there must be significant additional inflows after it in order to build up 
a queue at a subsequent location. If there are two bottlenecks that are equally narrow, 
the model chooses the latter on the route since that bottleneck could swallow some of 
the time it takes to queue on the earlier, but never the other way around. When the 
background noise of inflows and outflows is large (in the Berlin scenario this background 
noise sometimes exceeds the proportion of controlled agents on the alternative route), it 
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becomes problematic and should be handled. The multi-bottleneck model presented 
later was developed for this reason. 

Mathematical description 
The notations used in the expressions are described below. The sums’ index refers to the 
sequence of links on the route, where i = 0 refers the first link on the route. 

tti  free speed travel time for link i 
xi  number of agents on link i 
b index of the bottleneck link (the link where the accident has occurred) 
n index of the last link on the route 
cb bottleneck capacity (vehicles/second), assumed to be known to the model 

 
The free speed travel time for the entire route is the sum of the free speed travel time of 
all the links that constitute a route: 
 

! 

TTfs = tt
i= 0

n

" i  

 
The travel time in case of queue, TTqueue, is expressed by dividing the number of agents 
up to the bottleneck with the bottleneck capacity and last adding the free speed part. 
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The largest value of the two calculations is taken as the travel time prediction of the 
route: 
 

! 

TT =max TTfs;TTqueue( )  
 
These calculations are made every second for both routes. The Nash time is calculated 
as the difference between the two routes (called the “main route” and the “alternative 
route”): 
 

! 

ˆ y = TTmain "TTalt  
 
This is the value used as input to the feedback controller, which guides the agents into 
the faster of the two routes.  
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Figure 10. The test network used for the primary evaluation round. 

5.2 Evaluation  
In this chapter, the model performance will be evaluated on the test network described 
in section 3.8. Figure 10 helps us recall the scenario. According to the agents’ plans, the 
traffic flows steadily and with equal density over the two alternative routes. The 
accident indicated by the arrow reduces the capacity, which the guidance system 
compensates for by directing a larger proportion of the agents into the alternative (the 
lower) route. An accident occurs at 7:15 in the morning and the road capacity is 
restored at 8:15. Between those hours, the capacity is reduced to 50%, which can 
illustrate roughly the real world case where one or two lanes are shut off due to the 
accident. 
 
When switching on the control, the travel times decrease a lot and random noise is a big 
part of the differences in travel time between the main route and the alternative route.  
Therefore, a scenario with no control was run, but with the model predicting the travel 
times. In figure 11 we can compare the measured travel times (purple line) with the 
predicted (black, dashed line). 
 

 

Figure 11: Comparison of the predictions of the Single Bottleneck Model and the actual travel 
times. In the diagram, the accident occurs at time t = 600 and ends at t = 4200. No 
guidance control is applied. 
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As shown, the model predicts almost perfectly except for when the accident starts and 
ends. To deal with the first error, one would need to know that an accident will occur at 
a certain time and where and how much it reduces the capacity, so that the model can 
predict the future travel times correctly and the guidance control can guide pro-
actively. Similarly, the restoration back to normal capacity must be known some time 
before, so that one could guide the traffic as if the accident had already ended before it 
actually does. 

Since the model predicts the travel times accurately according to figure 11, travel time 
improvements are expected when switching on the control. In table 1, the travel times 
achieved with the Single Bottleneck Model (abbreviated the “SB”) are compared with 
the travel times of a non-accident case scenario, an accident scenario without control 
and with reactive control, i.e. the control using measured system outputs.  

 

Table 1: Fit values and travel time improvements of the SB model. Accident reduces the 
normal capacity to 50 percent on link 14. 

 Normal Case 
(no accident)  

Accident Case,  
No Control 

No Model 
(measured 

output) 

Single 
Bottleneck 

Model 
Main route:      
TT 229 568 359 232 
Agents 3999 4000 3258 3405 
Fit - - 58.8 96.8 
     
Alternative 
route:     
TT 227 227 276 229 
Agents 3999 3999 4741 4594 
Fit - - 83.4 98.3 
     
Total     
Std. Nash 
deviation 2.6 425.8 187.5 8.6 
Average TT 228 397 310 230 

 

The average travel time increases with 397 – 228 = 169 seconds when the accident 
occurs, which is a percentage increase of 74%. This increase in travel time is smaller 
with reactive control, which reduces it by 87 seconds. The percentage increase is thus 
36%. Using the model, the average travel time decreases to 230 seconds, only 2 seconds 
worse than the case without an accident. From these runs, we can also see that the fit 
values are much higher using the model compared to using measured travel times. The 
fit on the main route improves from 58.8 to 96.8 on the main route, and from 83.4 to 
98.3 on the alternative route.  

In the table, we can also see the standard Nash deviation. Our control goal is a Nash 
time of zero, although in reality, a Nash deviation that is similar to the deviation without 
an accident is quite enough. The table shows that the reactive control cuts the standard 
Nash deviation in half compared to when no control is applied. The Single Bottleneck 
Model further mitigates the effects of the accident and brings the standard Nash 
deviation down to one fiftieth of the no control case deviation. As expected, it can be 
seen in figure 12 that the only severe deviation is in the beginning, when the accident 
occurs.  
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Figure 12: Nash times Comparison between reactive control and Single Bottleneck control 

5.3 What does the Single Bottleneck model not handle? 
Due to delays caused by technical difficulties, the performance of the prediction model 
was not evaluated on the Berlin scenario until in a late phase of the thesis work. Before 
that, however, the effect of some traffic dynamics on the prediction model were 
analysed theoretically. The following problems were pinpointed in order to develop the 
model further: 
 

• Non-homogenous traffic density on routes. To the model, the route consists of 
two parts; the part before the bottleneck and the part after the bottleneck. 
When the traffic is concentrated to the beginning of the pre-bottleneck part, the 
Single Bottleneck model can falsely predict that an agent at the sign link will not 
queue at the bottleneck. The longer the route and the more heterogeneous 
distribution of agents, bigger will the prediction error be.    

• Inflows and outflows during the prediction time horizon. The Single Bottleneck 
model only takes into account the amount of traffic that is on the route when the 
prediction is done. In case agents leave or enter the route between the sign link 
and the bottleneck, the queuing time will change. 

 
Handling these problems is the subject of the two following chapters. Another feature 
that we wanted to develop in order to make the models less dependent of human 
operation was automatic incident detection. At a late stage, when the Berlin scenario was 
running, the effect of yet another model assumption was detected – there were two 
separate queues on the alternative route. In the Single Bottleneck model the travel time 
is assumed to be determined by not more than one queue. The topography of the test 
network had been too simple to generate a situation with multiple queues. Nevertheless, 
the last chapter in this part of the report is dedicated to the Multi-Bottleneck model. 
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Figure 13. Travel times for the main route without an accident. It can be seen that not all 
agents travel with free speed even though there are capacity left. Maximum capacity of a 
route is 3000 agents/hour and in this run, there are 2000 agents/hour. 

 
 
Figure 13 contains two prediction errors that will not be subject to further problem 
solving in this thesis work. The noise in the observed curve is due to non-homogenous 
traffic density on links. There are often micro-queues on single links that have much 
traffic, but not enough traffic to generate a "real" queue.3 This randomness makes the 
simulation more realistic since not all vehicles in a real world scenario drive at the speed 
limit at all times (of course, some vehicles would also drive faster than that, which is not 
possible at all in MATSim). No stochastic influence on an agent’s travel time will be 
modelled. However, one should have this random noise in mind when the prediction 
models are evaluated. 
 
Apart from the noise, figure 13 also shows a static prediction error (four seconds in this 
plot). Knowledge about the MATSim dynamics tells us that this error stems from the 
fact that it takes one second for an agent to go over a node. This could of course be 
compensated for in the models to achieve better predictions, but since this 
simplification in the simulator does not reflects the intersection dynamics in real traffic 
very well, we chose not to compensate for such errors.  
 
 

                                            
3 On probable cause of the noise is that the plans for the agents are created with a randomized 
method. Two agents trying to leave the same place simultaneously will cause a instantaneous 
demand peak, even though the average demand is below the maximum capacity. On of the 
agent will have to wait and try again in the next simulation step (which is by default one second 
later). 
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6. The Distribution Model 

6.1 The problem with unevenly distributed traffic 
The problem with heterogeneous or unevenly distributed of traffic arises when there is 
much traffic on the beginning of the route and only sparse traffic on the rest. Consider 
the situation in figure 14. There is heavy traffic on the first part of the route and after 
that almost empty up to the bottleneck. The basic Single Bottleneck predicts that the 
agent now being guided will not have to queue, based on the number of agents on all 
links before the bottleneck. The sparsely trafficked part lowers the average below the 
critical number of agents needed for a queue to build according to the SB model. 
Nevertheless, when the “heavy charge” in the beginning of the route reaches the 
bottleneck there will instantly be a congestion containing all the vehicles in the charge. 
Thus, the guided vehicle will queue even though it was expected drive free speed. If 
the prediction was correct, the vehicle would not have been guided into the lower 
route.  
 

 
 

Figure 14. Sparse traffic on the part before the accident. The arrow indicates the bottleneck. 
 
Because of the distribution of the traffic is not taken into account, the standard Single 
Bottleneck model makes prediction errors for the scenario described above. To detect 
heterogeneous traffic patterns we added a distribution check functionality to the Single 
Bottleneck model. 

6.2 The SB model with distribution check 
To solve the problem, multiple queuing calculations are done, i.e. the basic Single 
Bottleneck model approach is used a number of times, but for several subparts of the 
route. Important is that the same bottleneck capacity is used in the calculations for all 
parts. As in the SB model, agents are presumed to travel with free speed on all links after 
the bottleneck. Thus, the links after the bottleneck are added to what is called the free 
speed part of the route. The approach is then to go through the links, one by one, starting 
from the bottleneck and proceeding backwards against the beginning of the route. For 
every link, we check if the agents on the link are enough to cause congestion at the 
bottleneck. This is done with the basic SB method, i.e. the free speed travel time of the 
link is compared with the hypothetical queuing time; the time it will take for all agents 
on the link to pass the bottleneck using the number of agents and the bottleneck’s 
outflow capacity. This is a way of finding out if a dense group of cars on a part of the 
route will queue at the bottleneck. If the calculations state that they will not queue, the 
link is added to the free speed part, but if they will, one more calculation must be done. 
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This time, the same basic Single Bottleneck calculation is done, but for the part of the 
route consisting of the links from the start of the route, up to the link in question; whose 
vehicles will make up the queue. Still, the same bottleneck is used. This calculation is 
done to see if that particular queue has vanished by the time the vehicle currently 
being guided has travelled the distance to the first vehicle of the dense group, which is 
the sum of the link lengths of that part of the route. Here, the first vehicle of that group 
is assumed to be at the end of the link that it is travelling.  
 
Again, if the queue is predicted to have dissolved, we continue to check the next link. 
After a while, the entire route will belong to the free speed part, or there will be a free 
speed part and a queuing part. These are added to make up the prediction for the whole 
route.  
 

 
Figure 15. The two steps in the algorithm of the Distribution model. 

 

6.3 Evaluation: Prediction abilities 
When using the standard test population the problems described in the beginning of 
this chapter do not occur because the agents come in a steady flow. To evaluate the 
distribution model a new population was created which generates a steady base flow 
but also pulses that arise in reality, for example, because many agents leave home at the 
same time. Another example this can represent is the influence of traffic lights. In this 
evaluation scenario, the steady base flow is lower than it was with the normal population 
used for the basic SB evaluations, but pulses of heavy traffic comes on both routes 
approximately every ten minutes.  
 
First, the new population was guided using the regular SB model. The graphs of the 
predictions of the travel times on both routes exemplify the problem faced by the basic 
Single Bottleneck model. The guiding is activated.  
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Figure 16: Main route predictions with basic SB-control of pulsating traffic. 
 

 

Figure 17: Alternative route predictions with basic SB-control of pulsating traffic. 
 
In figures 16 and 17 above, we can see how the travel times increases every time a pulse 
of traffic comes on the route. It is obvious that the SB model is too late, predicting too 
low when a pulse comes. In these moments the traffic situation looks something like in 
figure 14.  
Now, let us see what the predictions look like using the Distribution model.  
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Figure 18: Alternative route predictions using Distribution Model on pulsating traffic. 
 

 
Figure 19: Main route predictions using Distribution Model on pulsating traffic. 
 
The results are good. This model predicts the travel times much better. The prediction 
errors are reduced on the main route and virtually eliminated on the alternative route. 
As shown by the figure 18 and figure 19 and in the evaluation table below, adding the 
distribution-check increased the fit slightly on the main route, and considerably on the 
alternative route. The conclusion is that with this feature in the prediction model 
pulsating traffic patterns will be handled better. And more reliable information about 
the travel times make way for better system performance when using feedback control. 
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Table 2: Evaluation table for the scenario with pulsating traffic. 
 

 Normal Case  
Accident No 
Control 

Single 
Bottleneck 
Model 

Distribution 
Model 

Main route:      
TT 233 683 253 254 
Agents 3998 3998 3354 3352 
Fit - - 95.6 96.1 
     
Alternative 
route:     
TT 232 232 259 255 
Agents 3998 3998 4642 4644 
Fit - - 96.3 99.1 
     
Total     
Std. Nash 
deviation 7.2 425.8 19.4 21.9 
Average TT 232 539 257 255 

6.4 Evaluation: Travel time improvements 
More accurate travel time prediction means a more adequate control signal which 
means decreased travel times for the agents – but only if there is potential for more 
effective route guidance in the system. So is the system performance improved when 
the distribution check is added? 
 
According to table 2, the distribution check improves the average travel time, but very 
slightly. The Nash deviation is a little bit worsened. The most probable reason for why 
the travel time only decrease by two seconds is that the usage of the routes’ capacities 
are already close to the optimum. When a pulse of heavy traffic comes, the travel times 
increases on both routes, as shown in figures 16 and 17. But even with a standard SB-
predicted output, the controller makes the best of the situation by letting the total travel 
times increase equally on both routes simultaneously. On the other hand, if the pulses 
would be only one of either route, the distribution check would detect them and 
compensate for the increased travel time on that route by redirecting a proportion of the 
traffic into the other route, whose capacity were not used fully. To create such a 
scenario in the test network, the agents in the pulses must not be object to route control, 
but must travel according to their own plan. Such agents are for example those who 
enter or leave the route between the sign and destination link. Then we would have a 
scenario in which the traffic flows cannot be regulated completely by the route 
guidance system.  
 
The reason why the Nash values are worsened is probably the square factor of the 
standard Nash deviation calculations. As we can see in figure 20 below, the Nash Times 
for the Distribution Model has more peaks than the Single Bottleneck Model. One 
important thing to keep in mind is that the bang-bang controller does not care about 
the magnitude of the Nash difference; it works exclusively according to the sign of the 
difference. This means that improved model fit values does not necessarily imply 
improved travel times – the control signal, i.e. the guiding signal to the agents might be 
exactly the same. It should also be mentioned that small differences such as a few 
seconds are hard to analyze, since there might be micro queues or other noise affecting 
the difference between the models to a large extent. It is undeniable though, that better 
fit values would be statistically beneficial for the system in the long run.  
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Figure 20: Nash time plot for the distribution model on a scenario with pulsating traffic. 
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7. Disturbance model  
Inflows and outflows of vehicles on a route can alter the traffic situation so that the travel 
time predicted with the regular SB model increases or decreases. An outflow of agents 
means that a guided vehicle might experience a travel time shorter than the predicted, 
whereas an inflow can make the route slower than predicted. If the majority of the 
agents on the route do not enter via the sign link (the link where the guidance is given), 
then the regular SB prediction will be based on very inadequate information. In order to 
compensate for such errors, the in- and outflows must be taken into account when 
counting the number of cars on the route. 
 
The non-deterministic character of such in and outflows constitute a fundamental 
problem since they are immeasurable during the prediction time and we therefore 
cannot know for sure how many vehicles that actually have to pass the bottleneck 
before the one being guided. The information at hand when giving the guidance is how 
many cars that is presently on the links, and present and historical inflow and outflow 
data. 
 

7.1 The Disturbance model 
Our approach to simulate a continuous in- or outflow is to measure the flow, and 
multiply that with the time it takes for the guided vehicle to get to the intersection 
where the in- or outflows take place. When this is done for all in- and outlinks, we 
calculate the total net change of agents caused by in- and outflows. The time factor is 
needed for calculating the number of agents that go on or off the route ahead of the 
agent now being guided, as a flow just before the bottleneck will result in a greater net 
change than a flow just after the sign link. 
 
The true travel time to an intersection is obviously not known beforehand since there 
might be a queue starting at the bottleneck and stretching passed the intersection. 
However, to predict the queue length correctly, the net flows must be taken into 
account, which puts us in a complex situation. To keep things simple and avoid 
complex calculations, we decided to use the free speed travel time up to the 
intersections when calculating the net flows. The free speed travel time will indeed be 
the correct simulation time to use when there is no queue stretching back passed the 
intersection. As long as demand is not extremely high and the guiding works well, this is 
a reasonable approximation. In any case, the model will always compensate for 
additional traffic to a certain extent. When calculating the average flow values we use 
the free speed travel time on the route as time horizon.  
 
Multiplying the additional flows with the travel time to each intersection, a net number 
of agents will be predicted to go off, or on the route ahead of the guided vehicle and 
thus the additional flows can be compensated for in the travel time prediction. The 
longer the queue gets, i.e. the more intersections the queue stretches passed, the worse 
the approximation will be. This is both because the travel time to the intersections will 
change and because the intersection dynamics will change when two flows interact, e.g. 
vehicles have to wait for each other. 

Mathematical description 
First, some notations are needed: 

xi  number of agents on link i 
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fi  flow to link i (positive value means inflow) 
ttj  free speed travel time for link j 
TTfs. free speed travel time for a route; Link 0 to link n 
b bottleneck index 
n index of last link 
cb bottleneck capacity (vehicles/second) 

 
The total number of agents that have to pass the bottleneck before the guided vehicle, 
is given by the following formula: 
 

! 

Xtot = xi
i=0

b

" + fi # ttj
j=0

i

"
$ 

% 
& 

' 

( 
) 

i=0

b

"  

 
This expresses the agents currently on the link (the first term) and the agents coming 
onto or going off the link calculated by the flows and the (free speed) travel time to the 
respective nodes (the second term). The queuing travel time is then:  
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At last, this is compared with the free speed travel time for the route and the biggest 
value is taken as the prediction.  
 

! 

TT =max TTfs;TTqueue( )  
 

7.2 Evaluation 
To evaluate the Disturbance model, a new population was created that included an 
extra inflow to the main route before the accident location.4 Vehicles coming onto the 
route there are not controlled by the route guidance but have to be compensated for in 
the model. One could also imagine a test scenario where there is outflow instead of an 
inflow. In analogy with the results presented in this section, an outflow would cause the 
regular SB model to make too high estimates of the travel time, and the disturbance 
model would compensate for it in the same manner as for the inflow. The inflow and 
the outflow case are theoretically similar and we will here present only the results from 
the inflow scenario, which in contrast to the outflow results in more congestion. As 
mentioned earlier, the test network was designed for the model development, while the 
Berlin network is used to evaluate the model. To evaluate the predictive strength of the 
model, the basic Single Bottleneck model is first run on the same population and the 
results are shown in figure 21. 
 

                                            
4 The test population is called PlansInflow. It is like PlansNormal but with an additional inflow 
on link 31 of 500 agents per hour. 
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Figure 21: Measured and SB-predicted travel times on the main route when there is an 
additional inflow. 
 
It is obvious that the standard SB model underestimates the travel times since it does not 
know about the extra inflow that must pass the accident before the guided car. With 
the disturbance compensation switched on the predictions improve, as seen in figure 
22. 
 

 
Figure 22: Measured and Disturbance-predicted travel times on the main route when there is 
an additional inflow. 
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Table 1. Evaluation table for disturbance model. Population with extra inflow from link 31 
on the test network. 

 Normal Case  Accident,  
No Control 

Single 
Bottleneck 

Model 

Disturbance 
Model 

Main route:      
TT 231 981 253 244 
Agents 4000 4000 3002 2968 
Fit - - 91.3 96.1 
     
Alternative 
route:     
TT 227 228 242 245 
Agents 3999 3999 4997 5031 
Fit - - 98.9 99.1 
     
Total     
Std. Nash 
deviation 5.7 839.2 33.6 20.7 
Average TT 229 605 246 245 

 
The model compensates for the inflow and improves the fit value from 91.3 to 96.1 on 
the main route (see table 3). The average travel time is not improved significantly. The 
reason is probably that the network is used in a close to optimal way, meaning that the 
capacities of the routes are used fully. Nash deviation, however, is reduced by 40 
percent, which shows that we are much closer to the control goal than when the 
standard SB model supplies the input. This is also reflected by the travel time averages, 
which are almost identical when using the Disturbance model.  The improvement in 
Nash times is clearly displayed in figure 23, where the Nash times for the Distribution 
Model and the Single Bottleneck Model are plotted simultaneously.  

 
Figure 23: Nash times for the disturbance and the regular single bottleneck model, 
respectively. 
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8. Incident detection 
The prediction approaches described use information about the accident; its location, 
its amplitude, and the time when it occurs. A traffic manager, who identifies the 
accident and reports its location and capacity reduction, can supply this information. 
This manual way of incident identification that is used today (for example in Berlin) is 
dependent of a fast and effective infrastructure that uses both human and technical 
resources. We have implemented a functionality in our prediction models that 
eliminates the need of manual detection of accidents and estimates capacity reductions. 
In turn it needs to know measured travel times to detect an accident on a link – a kind 
of information easily available with COOPERS-technology. 

8.1 The detection model  
To detect an accident, we must continuously search the route for congestions. When 
there is a queue the travel time on a link is unusually high. The algorithm starts in the 
end of the route, checking if the last agent leaving a link had a measured travel time 
longer than the free speed travel time. An unusually slow link means that a bottleneck is 
found. The measured outflow on the detected bottleneck link is then used for the travel 
time prediction, instead of the normal capacity of the link. Just like the incident 
detection, the measuring of flows uses information about how often agents leave a link. 
The procedure is described by the following pseudo code. 
 

Mathematical description 
The notations used in the expressions are described below. The sums’ index refers to the 
sequence of links on the route, where i = 0 refers the first link on the route. 
yi observed travel time on link i 
tIQT ignored queuing time on a link 
tti  free speed travel time for link i 
xi  number of agents on link i 
b index of the bottleneck link (the link where the accident has occurred) 
n index of the last link on the route 
ltj registered leave time for the j last agent 
fb observed flow through bottleneck (vehicles/second) 
 
To identify the bottleneck we check the following inequality for all links on the route, 
starting in the end of the route and going upstream.  
 

! 

yi > tti + tIQT  
 
If the measured travel time on a link is longer than the free speed travel time + tIQT 
seconds, the model has found a capacity reduction. There can be congested links 
upstream of the detected bottleneck link – such queues are assumed to be due to spill 
back from the queue at the bottleneck.  
 
It is normal that agents take a little longer time than the free speed travel time to travel a 
link, also when there is full capacity. When the traffic density is high, but still under 
congestion level, the agents travel closely and sometime have to wait for each other or 
lower their speed a little. The constant tIQT makes the detection less sensitive to this kind 
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of noise. In the test network we ignore additional travel time up to 20 seconds.5 The 
flow out from the link is then calculated based on the rate, with which the r last agents 
left the link: 
 

! 

fb =

lt j
j=1

r

"

r
 

 
By default the last 20 measurements are used. A higher number means a higher 
historical resolution with a more exact value, but at the same time a greater momentum 
and slower reflection of changes in the flow. After the bottleneck is found, the travel 
time is predicted as usual: 
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! 

TT =max TTfs;TTqueue( )  
 

! 

ˆ y = TTmain "TTalt  
      
In a real world implementation the supply of travel time data for all links on the routes 
would mean either a quite extensive infrastructure of sensors or COOPERS-devices 
sending this data. However, for a sufficiently reliable measurement of links flows, it 
would be enough with a not too small proportion of the agents having a COOPERS-
device installed. 

8.2 Evaluation 
In contrast to when evaluating the prediction models described previously, one could 
expect neither the prediction ability nor the travel times to improve in this case. After all 
it is a handicap not having immediate and totally reliable information about the 
accident. But on the other hand it is not reasonable to assume perfect information about 
accidents, as the other models do. 
 

                                            
5 We started out having a factor

! 

yi > tti " xIQT  where xIQT = 1.20 would imply that travel times 
up to 20 percent longer than the free speed time would be ignored. On very short links (e.g. 
link 14 where the accident occurs) micro-queues of less than a second was considered a sign of 
congestion, and for this reason the factor was replaced by a constant. 
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Figure 24: Travel times on main route with automatic incident detection. 
 
There are three obvious places with prediction errors in the travel time plot in figure 24. 
When an accident occurs it takes some time before it will be detected. The constant tIQT 
= 20 seconds corresponds to a small part of the total time delay. It can take up to ten 
minutes before the guidance react to the accident in the test network, which 
corresponds to the point where the observed travel times start to rise, to when the queue 
is reflected in the predicted travel times. These delays can be seen on three places in 
figure 24. When the bottleneck is detected, agents on the sign link will be getting a 
control signal that reflects the capacity reduction and vehicles will immediately be 
guided over to the other route. The long travel times in the plot represents agents who 
entered the main route before the accident occurred, and hence could not be helped 
by the route control. They will have to continue travelling the route that they started, 
even though an incident was detected by the traffic management system. This error is 
also to be seen in the main route travel time plots of the other models, but only once. In 
figure 24 the pattern appears three times. The reason is that the model “forgets” the 
accident. When an incident is detected the model uses this link as bottleneck for the 
travel time predictions for a certain period defined by a user parameter. The accident 
must be forgotten – or else the model will use the outflow as capacity even after the 
road is restored to normal, and it would not be able to detect other incidents. In the 
simulation that generated the plot above the model was set to remember the accident 
for 30 minutes and then again use the normal capacity. If the bottleneck had to be 
detected more often, there would be more large peaks than three in the graph. In a real 
traffic network, the choice of the reset time would not have such a big impact. When 
there is an incident on the main route – which is normally the fastest route – this route 
will always have a queue when the route guidance is active to keep the system at Nash 
equilibrium. This means that there is no risk that the incident is forgotten 
unintentionally due to absence of travel time observations. Therefore, in the Berlin 
scenario evaluated later in this report, the model is set to forget the accident every 
second – there will still be measured travel times of queuing agents.  
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Another and more effective way of handling the forgetting problem is to have a traffic 
manager that reset the detection function when the road is cleared and its capacity is 
restored to normal. In contrast to when incidents occur, the restoration does not happen 
unexpectedly; hence resetting the model is trivial to do manually. 
 
Apart from that the Incident detection model is a little slower than the regular SB when 
the accident starts and is forgotten, the predicted graph is also less smooth. This is due to 
inaccuracies in the flow measurements. If the average measured flow for the last n cars is 
used, every new car will have an influence on the flow measurements of 1/n parts. 
Thus, one has to weigh the disadvantages of noisy behaviour with the advantages of 
measuring only the most recent cars. 
 

 

Single 
Bottleneck 

Model 

SB with 
Incident 

Detection 
Main route:    
TT 232 243 
Agents 3405 3321 
Fit 96.8 93.6 
   
Alternative 
route:   
TT 229 230 
Agents 4594 4678 
Fit 98.3 98.0 
   
Total   
Std. Nash 
deviation 8.6 31.2 
Average TT 230 236 

Table 3: Evaluation table for the Incident detection model. 6 
 
Table 4 informs that the fit value is 3 percent lower for the main route with the incident 
detection. This prediction error is a result of the extended time delay discussed above, 
and it also makes us lead a few more agents into the accident route before the 
bottleneck is detected, which is reflected by in the increase of average travel time on 
the main route. 
 
 
 
 
 
 

                                            
6 The normal test population is used: 2000 agents/hour on each route. Accident: 50 percent 
capacity on link 14 from 7:15 to 8:15. 
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9. Multi Bottleneck Model  
When running the Berlin scenarios, we realized that the travel times were predicted 
well when there was only one queue. When more than one queue appeared, due to 
inflows and natural bottlenecks in the network, our models predicted too low, at least if 
the first queue is the more severe one. When the last queue on a route is the more 
severe, then its queuing time will swallow the other queuing time fully or to some 
extent. For developing a model that could handle this, the situation below was created 
on the test network. An accident is set on the small link 11, causing a queue there. 
Another accident is set on link 14, and due to the inflow from link 31, a queue builds 
there as well.  
 

 
Figure 25: Scenario for developing the Multi Bottleneck Model. Accidents are reducing the 
capacity on link 14 to 77 percent and on link 11 to 63 percent. Test population: PlansInflow 
(as PlansNormal but with additional inflow on link 31 of 500 agents per hour). 
 
 
It can be seen from figure 25 that the queue on link number 11 and number 10 is 
denser than the one on link number 14 and 13. Green colour represents free flow 
conditions and then there is a scale from yellow to red representing worsened 
conditions. Thus should all previous models underestimate the travel times on this route 
since only one of the bottlenecks is considered (link 14). 

9.1 The Multi Bottleneck Model  
The Multi Bottleneck Model divides the routes into segments, where every segment has 
its bottleneck. First, the incident detection procedure is done for the whole route and all 
bottleneck capacities where a queue has built up are stored. Then all flows are stored; 
flows on and off the route, but also flows on the route, i.e. from one segment to the next. 
The travel time for each segment is done as in the previous models; the only function 
not implemented is the distribution check (the problem with non-homogeneous traffic 
distribution is reduced partly by the route segmentation performed by Multi Bottleneck 
model). For the first segment it is done as before, but for the following segments, the 
number of agents ahead of the guiding object when reaching that segment must be 
simulated by assuming the flows to be constant during the time it takes to get there. 
Simulating/predicting the number of agents on every segment by the time the guided 
agent gets there allows the model to treat all segments with the same queue check 
approach. If there is no bottleneck on the last link of a route, all the links after the last 
bottleneck will be treated as free speed parts as in the previous models. 

Mathematical description 
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The main calculation is to determine the total number of agents, k

tot
X  going through the 

bottleneck on segment k before the agent currently being guided. This can be 
expressed mathematically as: 
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where the following notation is used: 

xi  number of agents on link i at t0 (start of simulation) 
Fs Intra flow onto link s at t0 
Fb Intra flow out from link b at t0 
STTj travel time for segment j 
fi  in or outgoing additional flows to/from link i 
ttm  free speed travel time for link m 
b bottleneck link index of the segment 
s first link of the segment 
k index of the calculated segment 
fbk observed flow through bottleneck on segment k 

 
The first term expresses the agents on the link at time t0. The second term represents the 
agents coming onto the segment from the previous segment subtracted with the agents 
leaving the segment during the time it takes for the guided agent to get to the beginning 
of the segment. The last term is the disturbance compensation for agents coming onto 
the route from additional links. Those flows are assumed to be constant during the time 
it takes to get to the intersections, counted as the predicted time to the start of the 
segment plus the free speed time to that certain intersection (node). 
 
After that calculation, the regular queuing travel time, TTqueue, is calculated, i.e. the 
simulated number of agents on the segment is divided by the segment’s bottleneck 
capacity. At last, this is compared with the free speed travel time; TTf.s. for the route and 
the biggest value is taken as the prediction.  
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These simulations and calculation are done for all n route segments, which add up to 
the predicted route travel time for the route. The predicted output is as usual the 
predicted time difference between the routes, and this value is sent to the controller 
that directs the agents.  
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9.2 Evaluation  
To show the predictive abilities of the Multi Bottleneck Model, we chose a scenario 
where the model predicts the travel times when no control is applied. This is because 
the model uses incident detection to discover the bottlenecks and that the incidents 
easily are forgotten as soon as the control is applied on the test network. This is not a 
problem on the Berlin scenario, as mentioned in the previous chapter. Figure 26 displays 
the main route predictions of the Single Bottleneck Model on this scenario. Incident 
detection is active, to make is more comparable with the multi bottleneck approach. 
 

 
Figure 26: The regular SB with incident detection on a scenario with two queues. 
 
The SB predicts to low in figure 26, which is expected since only one the queuing time 
from one of the two congestions is included in the predictions. Since the basic SB model 
does not handle inflow traffic at all, figure 27 shows the predictions when the 
disturbance compensation was activated: 
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Figure 27: SB, incident detection and Disturbance compensation on a scenario with two 
queues. 
 
The result is visibly better, but there is still an error, especially in the queue build-up 
phase, i.e. from 1000 seconds to 4500 seconds. Presumably, this is due to the limitations 
to one queue. Applying the Multi Bottleneck Model to the scenario, the results get as in 
figure 28. 
 

 
Figure 28: Multi Bottleneck model on a scenario with two queues. 
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Table 2. Evaluation table for multi-bottleneck prediction on the no control scenario. 
Prediction improvements for the main route. 
 Single 

Bottleneck 
Model with 

Incident 
detection 

Single 
Bottleneck 
Model with 

Disturbance 
compensation 

Multi 
Bottleneck 

Model 

Fit 91.2 93.6 95.4 
 
The change in fit values between the models is significant. The result indicates that the 
Multi Bottleneck Model reduces prediction problems due to multiple congestions. 
Better prediction accuracy implies generally improved travel times, which will be 
evaluated in the part III of this report. 
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Part III - Evaluation of the Berlin scenario  

10. The Berlin simulations 
Choosing a location in the Berlin network in MATSim and applying the predictive 
models and the guidance there was the next step in evaluating the models. A Berlin 
location constitutes a more complex system and the scenarios presented here are more 
similar to real world traffic than the scenarios in the test network (which were designed 
for implementing the models). 

10.1 Merging the models 
At this point the individual versions of the single-bottleneck model have been evaluated 
in the test network. To make it possible to run the model using several of the extra 
features at the same time, the java-classes for the individual models we merged into one 
class. This class has final class variables specifying what functions should be active. 
Another important motive for merging the classes were to get rid of redundant code that 
were common for all classes (Much redundancy had already been eliminated earlier 
when the super class AbstractControlInputImpl had been created.) Hence we are 
permitted to try the Single Bottleneck model in its most complete version. There are 
now only two model classes, the Single Bottleneck Model and the Multi Bottleneck Model. 
The different features of the Single Bottleneck Model can be tested separately though, 
by setting user parameters that switch the different functionalities on or off.  

10.2 Scoring 
MATSim has a scoring function that produces a score value in Euros for every agent 
according to how well the activities of the day were fulfilled. The scoring is calculated as 
a fitness function which is the sum of the utilities of the activities and the (dis)utilities of 
the travel. The utility of an activity depends on the duration of the activity, waiting 
time, late arrivals and early departures. The (dis)utility of the travel is only dependent 
on the travel time (Charypar, 2004), There is of course, a certain mathematical 
complexity behind this, but to simplify, one can conclude that longer travel times, 
resulting in for example coming to work too late, produces a lower score. For example, 
one hour of travel time lowers the score by 12 Euro (Charypar, page 19). 

Subpopulation score 
The score that MATSim produces is for the entire population. Since only a very small 
part of the agents in the Berlin simulations are actually affected by the guidance, the 
changes in the score due to the guiding are relatively small. Therefore, a scoring 
function that filters out a subpopulation was developed.7 The filter used in our 
simulations produces scores for all agents that passed both the sign link and the direction 
link during the whole day.  
 
To find out how many agents have to be equipped with a COOPERS’ device to get a 
benefit for all agents receiving the guidance we set up simulation runs with different 
compliance rates. E.g. a compliance rate of 50 % is equivalent with a scenario in which 

                                            
7 This was done by Grether, D., at Technische Universität Berlin. 
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half of the travelers possess a device. The agents equipped with a device are randomly 
selected in each simulation run.  

10.3 Travel time evaluation 
The Tegel highway connects the north-western suburbs of Berlin to the city centre and 
also to the ring road around Berlin (the “Berliner Ring”). An accident that reduces the 
highway capacity to 50 percent is simulated between 16.20 and 17.50, when many 
vehicles are leaving the centre and travelling north.8 Figure 29 shows the traffic 
situation at 17:20 in the normal case and the accident case. In the accident case almost 
the whole main route is congested due to the accident, but the alternative route has 
unused capacity. 
 

 
Figure 29. The no accident case (left) and the accident case (right) at 17:20. The accident 
causes a long queue on the highway, but the on the alternative route the demand is low. 
 
The scenarios were simulated for a whole day. The evaluation values, except the score, 
are extracted only between 16.10 and 18.10, in order to examine the effect of the 
route guidance only around the time of the accident. The reason for the longer time 
after the accident is that there must be time for a queue to dissolve after the accident is 
gone, so that all agents that were queuing will be measured. Figure 30 shows the rising 
travel time caused by the accident. The average travel time for agents on both routes is 

                                            
8 A 50 percent capacity reduction can be interpreted as one lane is shut down on a two-lane 
highway, the other having full capacity. Another, perhaps more realistic interpretation is that 
one out of three lanes is shut down, leaving two passable lanes but not with free speed. 
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1004 seconds, compared to 367 seconds without accident. All the simulation results are 
presented later in this chapter in tables 5A and 5B. 
 

 
Figure 30. Travel times in the accident – no control scenario. Purple graphs are observations; 
black are values predicted by the Single Bottleneck Model. There are two outliers in the upper 
diagram. 

Reactive Control 
We start out applying route guidance based on observed travel times. The result is 
displayed in figure 31. Thanks to the feedback control, some traffic is redirected into 
the alternative route, which lower s the overall average travel time from 1004 to 580 
seconds. (The average travel time is based on all agents passing both the sign link and 
the destination link, i.e. all agents that travel one of the two routes in the regulated 
system. Also the travel times of agents that do not comply with the advice are taken into 
account.) 
 
The characteristic system behaviour that were displayed in chapter 2 can be seen in 
figure 31, although natural variations in the demand makes the pattern less clear in this 
case. For example, at time t = 4000 seconds, the traffic is guided into the main route, 
based on observed travel times of 400 seconds. In reality, the main route travel time is 
800 seconds, which is much slower than the alternative route. 
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Figure 31. Route guidance based on observed travel times for the main route (above) and the 
alternative route (below). Purple represents the real value; black represents value used in 
feedback. 
 

Basic Single Bottleneck Model 
The system performance increases significantly when the guidance is based on 
predictive travel times. The destination link is now reached in averagely 349 seconds – 
even faster than in the no-accident-scenario without control (367 seconds). The traffic 
is distributed into the two routes, keeping the predicted travel times around 250 
seconds on both routes and accordingly the predicted Nash time around zero. Figure 32 
shows that the model generally predicts a little too high on the main route, but too low 
on the alternative route. A possible cause is the presence of several inflows on the 
alternative route, and one outflow on the main route. If this is the case one can expect 
an error reduction from disturbance compensation (evaluated below). 
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Figure 32. The Basic Single Bottleneck model. Main route (above) and the alternative route 
(below). Purple represents the real travel times; black represents predicted value applied in 
feedback. 
 
Compared to when no control is applied, the number of agents taking the alternative 
route increased from 7 to 123 (note that this corresponds to a increase from 70 to 1230 
agents if the whole Berlin population would be simulated). The NetVis visualization to 
the right in figure 33 shows mostly green or yellow links in the controlled system, 
indicating that the demand is on an acceptable level. The situation is similar throughout 
the time with reduced capacity. Without the modifications made of some capacities, 
the slip road leading off the highway would have caused queues. 
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Figure 33. System at 17:20. Left: no control; right: control with Basic SB model. Compared 
to the open loop system, the queue on the highway is significantly reduced and the demand on 
the alternative route is considerably higher. 
 
Apart from the benefits described above, the predictive feedback has positive effect 
also on the travel times before and after the accident. At 16:20, when the accident 
occurs, there is already heavy traffic on the northbound highway at Tegel. But as the 
traffic management system is active all day, some of the highway traffic has already 
been diverted onto the alternative route, which makes the initial conditions for the 
accident better than in the no-control scenario. Figure 34 visualizes the situation. In 
order to briefly estimate the benefits from predictive feedback control in ordinary traffic 
situation, the Basic SB model was evaluated also on a no-accident scenario, and the 
results are presented in the evaluation table 5A. 
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Figure 34. Traffic situation at 16:20 (just before the accident occurs). No control (left) and 
Basic SB Control (right). 
 

Distribution model 
Switching on the distribution functionality does not result in significantly shorter travel 
times (347 compared to 349 seconds without the distribution feature). Figure 35 
presents the travel times. The Distribution model overestimates a little on travel times on 
the highway, just like the basic SB model. But the prediction errors are reduced on the 
alternative route, where the model fit increases from 85.0 to 90.5 percent. This 
contribution to the fit value comes from situations when the distribution model 
identifies traffic patterns on the alternative route when most of the traffic is located in 
the beginning of the route. The basic SB model assumption that the traffic will pass 
through the bottleneck in a steady pace would lead to underestimation of the travel 
times, but the distribution model recognizes that pattern and predicts a higher value 
than the free speed travel times. (See chapter 6 for a more detailed explanation of the 
problem with heterogeneous distribution of the traffic.) 
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Figure 35. Distribution model. Main route (above) and the alternative route (below). Purple 
represents the real travel times; black represents predicted value applied in feedback. 
 

Disturbance model 
The evaluation of the basic SB model produced the hypothesis that the overestimation 
of travel times on the highway could possibly be due to an outflow upstream the 
bottleneck location. The evaluation results of the SB model with compensation of 
background traffic, does not confirm this hypothesis; see figure 36. The Disturbance 
model does no predict significantly better than the Basic SB model on neither route. In 
systems where there is proportionally many agents that travel only part of the route, 
predictions would certainly benefit from including such background traffic. The more 
intersections on a route, the higher is the influence on in- and outflows. The disturbance 
functionality should be evaluated further on another system. 
 
In order to improve the prediction technique, the cause of the overestimation of the 
main route travel times in the Tegel scenario should be investigated. Useful information 
can possibly be derived from the fact that the models predict better when the highway 
capacity is not reduced. Figure 37 presents the travel times in the normal day, no 
accident case. The prediction errors are considerably smaller on the highway (model fit 
= 94.3 percent). There is a marked static error in the predictions on the alternative 
route, due to the insufficient basic data; only seven agents travel the complete 
alternative route during the time window evaluated. 
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Figure 36. Disturbance model. Main route (above) and the alternative route (below). Purple 
represents the real travel times; black represents predicted value applied in feedback. 
 

 
Figure 37. Prediction of the Basic SB model when the highway has normal capacity and is not 
subject to route guidance. Purple represents the real travel times; black represents predicted 
values. 
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Incident Detection 
The Single Bottleneck model with automatic incident detection is the configuration 
that performs best of all models in the accident scenario, measured in terms of model fit 
on the highway route. This result was unexpected, as this model detect the bottleneck 
by measuring traffic flows, instead of beforehand information about when the accident 
occur and its amplitude. The highway travel times are 80 percent correct on average; 
the predictions are plotted in figure 38. 

 
Figure 38. Incident detection. Main route (above) and the alternative route (below). Purple 
represents the real travel times; black represents predicted value applied in feedback. 
 
Shifting focus to the alternative route, the predictions seem to be considerably 
influenced by noise. The parameter tIQT (ignored queuing time) discussed in chapter 8 
is set to 20 seconds, like in the evaluations in the test network. As soon as the travel time 
on one link is 20 seconds longer than its free speed travel time, the link is considered to 
have an incident (or some other kind of temporary capacity reduction). That bottleneck 
will be the used in the travel time prediction. Choosing the parameter value is a trade-
off between sensitivity and robustness. A longer ignored queuing time would result in 
less noisy predictions, whereas a lower value would slower detection of bottlenecks and 
more free speed travel time predictions. This parameter, just like the other model 
parameters in the additional SB features, deserves attention in order to optimize the 
prediction ability. 

Single Bottleneck Model with several additional features 
Figure 39 shows the prediction ability of the Single Bottleneck Model when three 
additional features are active simultaneously; distribution check, disturbance 
compensation and incident detection. Of all models evaluated in this chapter, this 
combination is the one that is closest to reaching the control goal. Figure 40 shows the 
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Nash times during the evaluation period. Prediction errors are reflected by the Nash 
time, but the main reason for the negative Nash time average is the travel time 
difference between the routes. The observed Nash time used as evaluation measure 
here corresponds to the Nash equilibrium only partially. The Nash time approaches zero 
when both routes are equally fast, and the predictions are correct. But the control goal is 
also achieved when one route is faster, and all agents take that route. This is the case 
between time t = 6000 seconds and t = 7000 seconds in figure 39 and 40. To refine the 
Nash time as an evaluation measure, one could let y = 0 represent the both cases of 
Nash equilibrium when calculation the total measure. 
 

 
Figure 39. SB model with distribution, disturbance and incident detection functionality 
active. Purple represents the real travel times; black represents predicted value applied in 
feedback. 
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Figure 40. Observed Nash times for the accident scenario with the SB model with all features. 
The Nash times are centered around –100, which corresponds to the prediction error on the 
main route, subtracted with the prediction error on the alternative route. 
 

Multi Bottleneck Model 
The Multi Bottleneck Model was designed to handle the situation when there is more 
than one bottleneck influencing the travel times of a route. In the initial studies of the 
Tegel location, the alternative route was an example of such conditions. When the final 
simulations were carried out, however, no multi-queue pattern arose on neither route. 
Therefore, the model cannot be evaluated here in an informative way. For this purpose, 
another and more suitable scenario should be simulated. Given the current conditions 
and the prediction algorithms of the models, the performance of the multi-bottleneck 
model should be compared with the results of the SB model when all the features are 
active. Figure 41 and table 5B, (see the column “SB all features”) shows that the SB 
gives better predictions, as well as better system performance. Hence the MB Multi 
Bottleneck model should be object for further evaluation and/or improvement.  
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Figure 41. Multi Bottleneck Model. Main route (above) and the alternative route (below). 
Purple represents the real travel times; black represents predicted value applied in feedback. 
 

Table 5A. Evaluation table for the Berlin network. 
 “Agents” are all agents that travel the whole main route and the alternative route, 
respectively. 
“Travel time”, “fit” and “Std. Nash deviation” is based on the group of agents defined above. 
 “Total Score” is based on all agents in the population. “Subpopulation Score” is based on 
agents that pass both the sign link and the destination link. 

 
Normal case  No accident, 

Basic SB 
Accident, 

No Control 
Reactive  

(No model) 
Basic SB 

M a i n  r o u t e  
Travel time 368 292 1014 604 358 
Agents 515 499 511 427 390 
Fit (94.33) 93.61 (61.12) (no pred.) 77.85 
      

A l t e r n a t i v e  r o u t e  
Travel time 311 292 317 482 320 
Agents 7 133 7 101 123 
Fit (79.26) 80.70 (78.09) (no pred.) 84.96 
      

T o t a l  
Travel Time 367 292 1004 580 349 

Std. Nash 
deviation 

116 160 764 256 127 

S c o r e  
Total Score 136,01820 135,89427 132,03027 135,90236 135,81067 
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Table 5B. Evaluation table for the Berlin network. 
 Distribution Disturbance Distribution+ 

Disturbance 
Basic SB 
Incident 

detection 

SB all 
features 

Multi 
Bottleneck 
 

M a i n  r o u t e  
Travel time 357 354 352 369 359 432 
Agents 393 391 389 395 396 402 
Fit 77.79 77.95 70.21 80.22 79.02 72.53 
       

A l t e r n a t i v e  r o u t e  
Travel time 313 325 308 313 311 333 
Agents 119 126 126 123 122 116 
Fit 90.46 82.67 87.73 84.89 87.16 81.90 
       

T o t a l  
Travel time 347 347 341 356 348 410 

Std. Nash 
deviation 

110 135 118 121 105 78 

S c o r e  
Total Score 135,79666 135,80525 135,83151 135,87289 135,85715 135,85100 

 

10.4 Score Evaluation 
The subpopulation score reflects the economic benefit (or disbenefit) of the route 
guidance for the agents traveling either of the two routes. Table 6 displays the score 
analysis of the different guidance strategies for the Tegel location. The first row of each 
table contains aggregated scores for the subpopulation of interest. The second row 
displays the difference in the aggregated score from the accident case when no control 
is applied. Average score values are found in the third row. The fourth row shows the 
difference in the average score from the accident case when no control is applied. For 
all models except the Distribution model the guided agents benefit from the guidance. 
When using reactive control agents receive the lowest benefit; on average 1.24 euros. 
The Disturbance model gives the highest gains; agents benefit 2.45 euros on average. 
The aggregated benefits range from 2281 euros with reactive control to 4495 euros 
with the disturbance model. Keep in mind that all the values are computed for a 10 
percent sample of total Berlin population. Hence, multiplying the aggregated values by 
ten gives the total simulated benefit.  
 

Table 6. Aggregated and average score values for the subpopulation. 

  

Accident, 
no control 

Reactive 
control 

Basic SB Distri-
bution 

Distur-
bance 

Detection SB with all 
features 

MB 

Score sum 242011.49 244292.78 244756.12 241850.15 246506.94 245625.84 245611.85 245523.56 

Difference  2281.29 2744.63 -161.33 4495.45 3614.35 3600.36 3512.08 

Score avg. 132.03 133.27 133.53 131.94 134.48 134.00 133.99 133.95 

Difference  1.24 1.50 -0.09 2.45 1.97 1.96 1.92 
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In total one can conclude that if guidance is applied, drivers that are guided will 
benefit. Unfortunately the benefit for the traffic system as a whole is not that obvious. 
The average scores of the whole population are displayed in the last row in table 5A and 
5B. When guidance is applied the total score even decreases slightly. Hypothetically 
this is due to the negative influence of the control on travelers using the alternative 
route under normal traffic conditions, i.e. when there is no accident. The accident takes 
place in the evening peek which means that agents that receive the guidance are on 
their way home from work. In the scoring setup, there is not an economic penalty for 
arriving late at home, and economic benefit from home activities is low. It is likely that 
the total score would increase if the accident would occur during the morning rush 
hour, when delays have a considerably larger negative impact on the score. Just as the 
model evaluation in general, the score should be evaluated in different situations. The 
problem is to find alternative routes that have capacity left for additional traffic in the 
morning hours. Within the realms of this project the time was not enough for further 
evaluation. A suggestion for further research is to develop a MATSim algorithm that 
automatically finds potential alternative routes. As suggested in the introduction of this 
report, with an extension of the control system several alternative routes could be used 
for diverting the traffic of a highway with reduced capacity. 
 
Another reason for the marginal influence on the system as a whole is that guidance 
focuses only on the travel times on the two routes. The reason for negative network 
effects indicated by the total score can that the guidance has a local control goal, i.e. it 
cares only about the subsystem that is subject to control. Therefore it seems worth to 
understand and improve the system as whole, taking not only travel time minimization 
into account. 

Equipment ratio 
The results presented so far are all based on the assumption that 80 percent of the 
agents are equipped with a COOPERS’ device, and comply with the advice. It can be 
argued for that this is a relatively high equipment ratio, imposing the question of how 
many agents must be equipped with a COOPERS’ device in order to get a significant 
benefit from the route guidance? Table 7 shows results of simulation runs using the 
Single Bottleneck model with all features and different compliance rates. It is clear that 
even with a compliance rate of only 20 percent, the subpopulation is better off than if 
no control were applied.   
 

Table 7. Scores of agents traveling on the highway during the day for different equipment 
rates. Even when only 20 percent of the agents possess a device, guidance results in economic 
benefits. 

 

10.5 General comments on the Tegel location 
It has been complicated and time consuming to find a location in Berlin for the 
evaluation on the prediction models. Tegel was the fourth system that was examined. 
Despite all examination and awareness of problems the Tegel location has not been a 
completely satisfactory locations for evaluating the route guidance and the predictions 
models. The fact that the traffic conditions at Tegel have not been exactly the same 

  No control 20 % 30 %  40 % 50 % 
Score sum 242011.49 242475.36 246567.64 244707.11 244662.06 
Score avg. 132.03 132.28 134.52 133.50 133.48 
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throughout our work can be partly due to the evaluation of the traffic simulating 
software.  
 
The accident scenario has been in focus for the evaluation. It was not expected that the 
system could benefit from route guidance under normal traffic conditions. The vast 
majority of the population is experienced drivers that know which route is normally the 
fastest (in MATSim, the day-to-day replanning algorithms are designed to achieve 
optimal plans). Therefore it was a surprise that applying route guidance considerably 
reduced the travel times in the normal day scenario (se table 5A). This benefit also 
proves that the travel plans of the population used are not optimal.9 Since these plans 
were generated, the replanning algorithms have been improved. Consequently, it is 
possible to produce more realistic input to the simulations. More realistic input implies 
more reliable evaluation, not least in the Score measure. 
 
The modifications of the capacities constitute another reason for why the agents’ plans 
are not optimized to the network. Since no day-to-day replanning has been carried out, 
then agents have not had the chance to adapt to the slightly changed conditions. 

General comments on the performance of the models 
The travel times plots presented in this chapter have in common that the predictions for 
the main route are mostly too high, and the those on the alternative route are too low. 
The standard deviation for the Nash time is therefore well above zero (see figure XX). 
A reason for the prediction errors on the alternative route is the absence of queues. The 
traffic situation is not that, which the Single Bottleneck model was designed to handle. 
The part of the travel time that exceeds the free speed time, is the result of more 
random and temporary dynamics than a queue mainly determined by a bottleneck 
capacity. For the analysis of such dynamics (including the question whether they are 
realistic or due to model simplifications/flaws), more detailed information about the 
traffic patterns is needed. Better knowledge of the route dynamics would also be 
beneficial for further improvement of the prediction models. 

                                            
9 The “run 86”, iteration 80 (run86.it80.selected.plans.xml) have been used in the Berlin 
evaluation scenarios. 
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11. Conclusions 
There is no doubt that the prediction of travel times improves the route guidance, 
measured in terms of lower travel times. The simulations in the test network very clearly 
confirm that the Single Bottleneck approach for calculating travel times is well suitable 
in MATSim. Compared to reactive control, the Nash times are reduced by 95 percent 
in the test network and 57 percent in the Berlin simulation. The travel times are 
reduced by 26 and 41 percent, respectively.  
 
Berlin simulations during the autumn showed that there were traffic dynamics that the 
regular SB-model does not handle. For this reason we continued with developing the 
additional features described in part II. Unfortunately these features could not be tested 
as thoroughly as we hoped because of the limited complexity of the test network and 
the technical problems with the Berlin simulations. According to the test network, 
however, all of the models have positive effect on the situation that they were designed 
to handle, although it could not be determined to what extent they bring us closer to 
the control goal and/or improve the travel times. The Distribution model, the 
Disturbance model and the Multi Bottleneck model all increase the model fit 
significantly in the test network. 
 
In order to draw reliable conclusions about the models, more evaluation should be 
carried out. Indications are not dependent only of what evaluation measure that is used 
(Score, average travel times of agents subject to route guidance, average travel times for 
the whole network, etc), but also of which part of the network that is chosen for 
evaluation. Simulating the route guidance with feedback of the travel times on other 
locations can give much useful knowledge. 
 
The traffic simulating software caused us some practical problems. Still MATSim is 
without doubt a powerful tool for the development of traffic management systems. To 
implement our approach with predictive feedback control in a real world system, 
further evaluation should be carried out on real scenarios. A first step towards a route 
guidance system in use, are reliable MATSim simulations on different times and places 
in Berlin.  
 
One of our aims that were achieved was to eliminate the need of parameter tuning. 
With good predictions and a minimal message hold-time, there is no need to apply more 
advanced controllers than the bang-bang controller, which has no control parameters. 
Neither the prediction models need to be estimated – all the necessary information is in 
the network file and accessed via MATSim. Once the routes are specified, neither the 
prediction model nor the feedback controller needs any more estimation. In contrast to 
any controller that produces a continuous control signal, the bang-bang control signal is 
already compatible with the discrete traffic system. The binarization process that is 
otherwise carried out in the class VDSSign involve a trade-off between having a freshly 
updated control signal and the exactness of the control signal when it is translated into a 
sequence of binary numbers.  
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12. Ideas for future research  
The goal to develop predictive models that can improve traffic guidance control 
compared to using measured feedback is achieved, but as we can see from the Berlin 
simulations, there are still modifications that need to be done. One idea that we 
developed in a late phase of the thesis work and was not feasible to develop due to time 
constraints, was that although the measured times are too late, they could help us to 
online-tune the models. If the predictions have had too low estimates of the travel time 
during some time, the models could be tuned to predict higher. This would be a 
“feedback tuning” of the model itself that further could improve the control. 
 
Another idea is to use a traffic simulator such as MATSim for online predictions. Using 
COOPER devices for collecting data, a simulator could place agents in a network at the 
right locations, with the right speed etc. Then the simulator is run forward guiding an 
agent either left or right and the travel time is measured. This approach would probably 
be fruitful when the routes are long and the traffic situation complex.  
 
Some specific changes can be made that should improve the control performance. 
Outliers, i.e. travel times that do not reflect the current traffic situation, should not be 
used for feedback. For example, there are agents that stop on the route for some activity, 
get back on the route much later during the day and are eventually measured by the 
sensor in the end of the route. A way of handling the problem is to ignore such outliers 
and instead giving the last realistic Nash time as feedback (in reactive control) or as 
input to the model (in predictive control). However, the choice of criteria for which 
measurements that should be regarded as not normal is a non-trivial problem. 
 
The automatic detection of capacity reduction (which is used both in the Multi 
Bottleneck model and in the incident detection of the Single Bottleneck model) could 
be improved by an extension of the detection criteria. The calculations of prediction 
will be less sensitive and more stable if the travel times of at least two agents, instead of 
only one, must exceed the free speed + ignored queuing time on a link before it is 
considered to be a bottleneck.  
 
In the theory chapter of this report we discussed the possibility of extending the 
guidance system to more than two routes. If there is an existing infrastructure supplying 
the measurements for any route (which is the case in MATSim or with COOPERS-
devices in the real world), adding more alternative routes should be fairly easy. Such an 
extension could lead to a much more efficient usage of the capacity of the traffic 
network, and is thus in our opinion a good way of further improving the predictive 
feedback control. 
 
The Multi-Bottleneck model was a result of analysing Berlin simulations. We noticed 
that the main problem for all the SB-models seemed to be the occurrence of two queues 
on the alternative route. Several separate congestions are probably a common situation 
when there are many inflow and outflows along a long route – which may be a common 
in real traffic systems. With this motivation in mind, we hope that the Multi-Bottleneck 
approach will be evaluated more thoroughly. 
 
The simulation score is interesting as an evaluation measure. It takes into account the 
performance over a whole day for every agent in the population, and then translates this 
performance into an economic entity. As such it facilitates socioeconomic evaluation of 
measures like new traffic management strategies, which in turn facilitates the decision 
process in politics. In our evaluation we have used the standard scoring parameters, 
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meaning that only the time spent travelling affects the score of an agent (the score is 
negatively proportional to the travel time; but there is also extra penalties, for instance 
for arriving late at work). The route guidance is designed to optimize the travel time – 
but time is not always correlated with cost. When taking the alternative route is faster 
than travelling the congested highway, it can nevertheless be more costly for the reason 
that the agent travels a longer distance. Using a distance cost (based on fuel 
consumption, mechanical wear, etc) in the scoring would result in a realistic cost for the 
individual agent. In addition to this, the distance factor in the score can be specified to 
include also an environmental cost, with a greater negative contribution from emission 
(possibly dependent of the fuel type, the number of persons in the vehicle, etc). That 
way the simulation score would more realistically reflect the cost of travel for the 
collective.    
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